標題: Newborn Screening System Based on Adaptive Feature Selection and Support Vector Machines
作者: Hsieh, Sung-Huai
Chien, Yin-Hsiu
Shen, Chia-Ping
Chen, Wei-Hsin
Chen, Po-Hao
Hsieh, Sheau-Ling
Cheng, Po-Hsun
Lai, Feipei
資訊技術服務中心
Information Technology Services Center
公開日期: 1-一月-2009
摘要: The clinical symptoms of metabolic disorders during neonatal period are often not apparent, if not treated early irreversible damages such as mental retardation may occur, even death. Therefore, practicing newborn screening is very important to prevent neonatal from these damages. In this paper, the newborn screening system used support vector machines (SVM) classification technique is proposed in place of cut-off value decision to evaluate the metabolic substances concentration raw data obtained from tandem mass spectrometry (MS/MS) and determine whether the newborn has some kinds of metabolic disorder diseases. On the basis of the proposed features, new analytic combinations are identified with superior discriminatory performance compared with the best published combinations. Classifiers built with the feature selection to find C3/C2, C3 and C16 of three key point features achieved diagnostic sensitivities, specificities and accuracy approaching 100%.
URI: http://dx.doi.org/10.1109/BIBE.2009.72
http://hdl.handle.net/11536/150504
ISSN: 2471-7819
DOI: 10.1109/BIBE.2009.72
期刊: 2009 9TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING
起始頁: 344
顯示於類別:會議論文