Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Chien-Hengen_US
dc.contributor.authorChuang, Chiao-Ningen_US
dc.contributor.authorChang, Wen-Yien_US
dc.contributor.authorTsai, Whey-Foneen_US
dc.date.accessioned2019-04-02T06:04:49Z-
dc.date.available2019-04-02T06:04:49Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-94301-5_14en_US
dc.identifier.urihttp://hdl.handle.net/11536/150723-
dc.description.abstractThe present study utilizes VirtualBox virtual environment technology to develop the personal big data multi-VM platform with four-node Spark and Hadoop cluster that can effectively replicate and provide an environment for developers to easily design and implement the Spark and Hadoop Map/Reduce programming. Before running their Big Data and deep learning applications in physical multi-node Spark and Hadoop Cluster, developers can conduct Map/Reduce programing simply on the proposed multi-VM platform, which is exactly the same as the physical one. To demonstrate its capability and applicability, this study utilizes the deep learning application as an example for function illustration. In this study, the big data multi-VM platform provides the rapid prototyping of distributed deep learning by using a cutting-edge framework TensorFlowOnSpark (TFoS) for AI developers. To look into deep insight, this study performs the deep-learning benchmark in different types of cluster systems including the multi-node big data VM platform, physical standalone system and the physical small-cluster system. The results indicate that InputMode. SPARK can get 3.3 times faster than InputMode. TENSORFLOW on the big data VM platform and even achieve 6.1 times faster on the physical server.en_US
dc.language.isoen_USen_US
dc.subjectBig data multi-VM platformen_US
dc.subjectDeep learning application Sparken_US
dc.subjectIn-memory computingen_US
dc.subjectHadoop Map/Reduceen_US
dc.titleDevelopment of Big Data Multi-VM Platform for Rapid Prototyping of Distributed Deep Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-94301-5_14en_US
dc.identifier.journalBIG DATA - BIGDATA 2018en_US
dc.citation.volume10968en_US
dc.citation.spage182en_US
dc.citation.epage193en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000443141500014en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper