完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWan, Shengen_US
dc.contributor.authorWu, Tung-Yuen_US
dc.contributor.authorWong, Wing H.en_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2019-04-02T06:04:14Z-
dc.date.available2019-04-02T06:04:14Z-
dc.date.issued2018-01-01en_US
dc.identifier.urihttp://hdl.handle.net/11536/150762-
dc.description.abstractIn this paper, we propose Confidence Network (ConfNet) which not only makes predictions on input images but also generates a confidence score that estimates the probability of correctness of each prediction. Furthermore, Confidence Loss is proposed to make ConfNet automatically learn confidence scores in the training phase. The experiments on two public datasets show that the confidence scores generated by ConfNet are highly correlated with the model accuracy and outperforms two related methods. When stacking two ConfNets in a cascade structure, 3.8x computational cost can be saved compared to the single state-of-the-art model with only 0.1% increase of error rate.en_US
dc.language.isoen_USen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectConfidence scoreen_US
dc.subjectModel Cascadeen_US
dc.titleCONFNET: PREDICT WITH CONFIDENCEen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage2921en_US
dc.citation.epage2925en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000446384603018en_US
dc.citation.woscount0en_US
顯示於類別:會議論文