完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Y. T. K.en_US
dc.contributor.authorHu, J. S.en_US
dc.contributor.authorTsai, Y. H.en_US
dc.contributor.authorChiu, W. Y.en_US
dc.date.accessioned2019-04-02T06:04:18Z-
dc.date.available2019-04-02T06:04:18Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2159-6255en_US
dc.identifier.urihttp://hdl.handle.net/11536/150777-
dc.description.abstractIndustrial image datasets for quality inspection are mostly sparse in defects. It is then hard for both automated optical inspection (AOI) machines and simple neural network classifiers to inspect all defects effectively. In this work, we develop a novel framework for industrial anomaly detection in one-class classification manner, which utilized pre-trained generative adversarial networks (GANs) as the rule of thumb to perform anomaly detection. Our results show that GANs are able to capture arbitrary and structural industrial images and can effectively discern defects when the query images are defective.en_US
dc.language.isoen_USen_US
dc.titleIndustrial Anomaly Detection and One-class Classification using Generative Adversarial Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM)en_US
dc.citation.spage1444en_US
dc.citation.epage1449en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000447254200242en_US
dc.citation.woscount0en_US
顯示於類別:會議論文