完整後設資料紀錄
DC 欄位語言
dc.contributor.authorZhu, Fangyien_US
dc.contributor.authorLi, Xiaoxuen_US
dc.contributor.authorMa, Zhanyuen_US
dc.contributor.authorChen, Guangen_US
dc.contributor.authorPeng, Paien_US
dc.contributor.authorGuo, Xiaoweien_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorGuo, Junen_US
dc.date.accessioned2019-04-02T06:04:52Z-
dc.date.available2019-04-02T06:04:52Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn1865-0929en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-981-10-7302-1_46en_US
dc.identifier.urihttp://hdl.handle.net/11536/150799-
dc.description.abstractSmall-sample classification is a challenging problem in computer vision and has many applications. In this paper, we propose an image-text dual model to improve the classification performance on small-sample dataset. The proposed dual model consists of two submodels, an image classification model and a text classification model. After training the sub-models respectively, we design a novel method to fuse the two sub-models rather than simply combining the two models' results. Our image-text dual model aims to utilize the text information to overcome the problem of training deep models on small-sample datasets. To demonstrate the effectiveness of the proposed dual model, we conduct extensive experiments on LabelMe and UIUC-Sports. Experimental results show that our model is superior to other models. In conclusion, our proposed model can achieve the highest image classification accuracy among all the referred models on LabelMe and UIUC-Sports.en_US
dc.language.isoen_USen_US
dc.subjectSmall-sample image classificationen_US
dc.subjectEnsemble learningen_US
dc.subjectDeep convolutional neural networken_US
dc.titleImage-Text Dual Model for Small-Sample Image Classificationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-981-10-7302-1_46en_US
dc.identifier.journalCOMPUTER VISION, PT IIen_US
dc.citation.volume772en_US
dc.citation.spage556en_US
dc.citation.epage565en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000449831600046en_US
dc.citation.woscount0en_US
顯示於類別:會議論文