完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Zhu, Fangyi | en_US |
dc.contributor.author | Li, Xiaoxu | en_US |
dc.contributor.author | Ma, Zhanyu | en_US |
dc.contributor.author | Chen, Guang | en_US |
dc.contributor.author | Peng, Pai | en_US |
dc.contributor.author | Guo, Xiaowei | en_US |
dc.contributor.author | Chien, Jen-Tzung | en_US |
dc.contributor.author | Guo, Jun | en_US |
dc.date.accessioned | 2019-04-02T06:04:52Z | - |
dc.date.available | 2019-04-02T06:04:52Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 1865-0929 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/978-981-10-7302-1_46 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/150799 | - |
dc.description.abstract | Small-sample classification is a challenging problem in computer vision and has many applications. In this paper, we propose an image-text dual model to improve the classification performance on small-sample dataset. The proposed dual model consists of two submodels, an image classification model and a text classification model. After training the sub-models respectively, we design a novel method to fuse the two sub-models rather than simply combining the two models' results. Our image-text dual model aims to utilize the text information to overcome the problem of training deep models on small-sample datasets. To demonstrate the effectiveness of the proposed dual model, we conduct extensive experiments on LabelMe and UIUC-Sports. Experimental results show that our model is superior to other models. In conclusion, our proposed model can achieve the highest image classification accuracy among all the referred models on LabelMe and UIUC-Sports. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Small-sample image classification | en_US |
dc.subject | Ensemble learning | en_US |
dc.subject | Deep convolutional neural network | en_US |
dc.title | Image-Text Dual Model for Small-Sample Image Classification | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1007/978-981-10-7302-1_46 | en_US |
dc.identifier.journal | COMPUTER VISION, PT II | en_US |
dc.citation.volume | 772 | en_US |
dc.citation.spage | 556 | en_US |
dc.citation.epage | 565 | en_US |
dc.contributor.department | 電機工程學系 | zh_TW |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.identifier.wosnumber | WOS:000449831600046 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |