Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorLeu, Dar-Renen_US
dc.date.accessioned2019-04-02T06:04:24Z-
dc.date.available2019-04-02T06:04:24Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://hdl.handle.net/11536/150851-
dc.description.abstractIn a seismogram there exist many kinds of wavelets. The reflected wavelet from the gas sand zone has different shape with other layers. We use shape structure of the wavelet in the analysis. Syntactic pattern recognition is applied to the clustering of wavelets in the seismogram. The extracted wavelets can be represented as the strings of symbols. We use Levenshtein distance to calculate the distance between two strings. Then we can construct the hierarchical clustering of the wavelets. Top down hierarchical clustering by recursive method is proposed. A new pseudo F-statistics (NPFS) is proposed to decide the optimal number of clusters. From the experimental results in seismogram the wavelets on the gas sand zone can be detected successfully. It can improve the seismic interpretation.en_US
dc.language.isoen_USen_US
dc.subjectSyntactic methoden_US
dc.subjectLevenshtein distanceen_US
dc.subjectwaveleten_US
dc.subjecthierarchical clusteringen_US
dc.subjectseismogramen_US
dc.titleSYNTACTIC PATTERN RECOGNITION FOR WAVELET CLUSTERING IN SEISMOGRAMen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMen_US
dc.citation.spage7149en_US
dc.citation.epage7152en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000451039806218en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper