Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Yu-Tingen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorHsieh, Tsung-Yuen_US
dc.contributor.authorWu, Shang-Linen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2019-04-02T06:04:33Z-
dc.date.available2019-04-02T06:04:33Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0922-6389en_US
dc.identifier.urihttp://dx.doi.org/10.3233/978-1-61499-484-8-140en_US
dc.identifier.urihttp://hdl.handle.net/11536/150895-
dc.description.abstractThis paper proposes a novel Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system (NFS), which utilizes the artificial bee colony (ABC) evolutionary algorithm for parameter optimization. The ABC evolutionary algorithm was developed based on imitating foraging behavior of natural bees for numerical optimization problems, and it has been proved to outperform other metaheuristic approaches on different constrain optimization problems in previous studies. The proposed NFS in this paper adopts an adaptive clustering method to generate fuzzy rules for determining the system architecture, and the TSK-type reasoning is employed for the consequent part of each rule. Subsequently, all free parameters in the NFS designed, including the premise and the consequent parameters, will be optimized by ABC algorithm. This study compares the performance of ABC algorithm with that of Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE). The simulation results show that the performance of ABC algorithm is superior to that of the mentioned algorithms for solving dynamic system problems.en_US
dc.language.isoen_USen_US
dc.subjectNeuro-fuzzy systems (NFS)en_US
dc.subjectartificial bee colony (ABC) algorithmen_US
dc.subjectSwarm intelligenceen_US
dc.subjectEvolutionary algorithm (EA)en_US
dc.titleA global optimized neuro-fuzzy system using artificial bee colony evolutionary algorithmen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.3233/978-1-61499-484-8-140en_US
dc.identifier.journalINTELLIGENT SYSTEMS AND APPLICATIONS (ICS 2014)en_US
dc.citation.volume274en_US
dc.citation.spage140en_US
dc.citation.epage149en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000454394100015en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper