完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Ya-Chingen_US
dc.contributor.authorChen, Hua-Tsungen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.contributor.authorLiao, I-Chunen_US
dc.date.accessioned2019-04-02T06:04:37Z-
dc.date.available2019-04-02T06:04:37Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/150953-
dc.description.abstractDrones are well-liked nowadays. However, deep learning models for object detection still cannot have high detection rates for pedestrians in aerial images even though they already show high precision on PASCAL VOC 2007. The main challenges of aerial image analysis include: (i) the size of an object in aerial images can be very small, and (ii) the objects in aerial images are tilted outward due to perspective projection deformation, which make the pedestrians hard to recognize in aerial images. In this paper, we utilize image partition and vanishing point transformation to overcome the above challenges. Experimental results demonstrate that such pre-processing methods can indeed increase the detection rates significantly for some deep learning models.en_US
dc.language.isoen_USen_US
dc.subjectPedestrian detectionen_US
dc.subjectdroneen_US
dc.subjectaerial imageen_US
dc.subjectdeep learningen_US
dc.subjectvanishing point transformationen_US
dc.titlePEDESTRIAN DETECTION IN AERIAL IMAGES USING VANISHING POINT TRANSFORMATION AND DEEP LEARNINGen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage1917en_US
dc.citation.epage1921en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000455181502009en_US
dc.citation.woscount0en_US
顯示於類別:會議論文