完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chun-Yuen_US
dc.contributor.authorLi, Ruimingen_US
dc.contributor.authorAkutsu, Tatsuyaen_US
dc.contributor.authorRuan, Peiyingen_US
dc.contributor.authorSee, Simonen_US
dc.contributor.authorYang, Jinn-Moonen_US
dc.date.accessioned2019-04-02T06:04:24Z-
dc.date.available2019-04-02T06:04:24Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2471-7819en_US
dc.identifier.urihttp://dx.doi.org/10.1109/BIBE.2018.00035en_US
dc.identifier.urihttp://hdl.handle.net/11536/150963-
dc.description.abstractCancer subtype identification is an unmet need in precision diagnosis. Recently, evolutionary conservation has been indicated containing understandable signatures for functional significance in cancers. However, the importance of evolutionary conservation in distinguishing cancer subtypes remains unclear. Here, we identified the evolutionarily conserved genes (i.e., core gene) and observed that they are mainly involved in the pathways relevant to cell growth and metabolisms. By using these core genes, we integrated their evolutionary and genomic profiles with deep learning to develop a feature-based strategy (FES) and an image-based strategy (IMS). In comparison with FES using the random set and the strategy using the PAM50 classifier, core gene set-based FES has higher accuracy for identifying breast cancer subtypes. Moreover, the IMS with data augmentation yields better performance than the other strategies. Comprehensive analysis of eight TCGA cancer data demonstrates that our evolutionary conservation-based models provide a valid and helpful approach to identify cancer subtypes and the core gene set offers distinguishable clues of cancer subtypes.en_US
dc.language.isoen_USen_US
dc.subjectcancer subtypeen_US
dc.subjectevolutionary conservationen_US
dc.subjectdeep learningen_US
dc.subjectconvolutaional neural networken_US
dc.subjectcancer genomicsen_US
dc.subjectgene expressionen_US
dc.subjectcopy number alterationen_US
dc.titleDeep Learning with Evolutionary and Genomic Profiles for Identifying Cancer Subtypesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/BIBE.2018.00035en_US
dc.identifier.journalPROCEEDINGS 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE)en_US
dc.citation.spage147en_US
dc.citation.epage150en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000455225600027en_US
dc.citation.woscount0en_US
顯示於類別:會議論文