完整後設資料紀錄
DC 欄位語言
dc.contributor.authorMao, Zijingen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorHuang, Yufeien_US
dc.date.accessioned2019-04-02T06:04:16Z-
dc.date.available2019-04-02T06:04:16Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-39955-3_6en_US
dc.identifier.urihttp://hdl.handle.net/11536/150990-
dc.description.abstractThis study considers an important problem of predicting required calibration sample size for electroencephalogram (EEG)-based classification in brain computer interaction (BCI). We propose an adaptive algorithm based on learning curve fitting to learn the relationship between sample size and classification performance for each individual subject. The algorithm can always provide the predicted result in advance of reaching the baseline performance with an average error of 17.4 %. By comparing the learning curve of different classifiers, the algorithm can also recommend the best classifier for a BCI application. The algorithm also learns a sample size upper bound from the prior datasets and uses it to detect subject outliers that potentially need excessive amount of calibration data. The algorithm is applied to three EEG-based BCI datasets to demonstrate its utility and efficacy. A Matlab package with GUI is also developed and available for downloading at https://github.com/ZijingMao/LearningCurveFittingForSampleSizePrediction. Since few algorithms are yet available to predict performance for BCIs, our algorithm will be an important tool for real-life BCI applications.en_US
dc.language.isoen_USen_US
dc.subjectSample size predictionen_US
dc.subjectCalibrationen_US
dc.subjectBrain computer interfaceen_US
dc.subjectEEGen_US
dc.subjectRapid serial visual presentationen_US
dc.subjectDriver's fatigueen_US
dc.titlePredicting EEG Sample Size Required for Classification Calibrationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-39955-3_6en_US
dc.identifier.journalFOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, AC 2016, PT Ien_US
dc.citation.volume9743en_US
dc.citation.spage57en_US
dc.citation.epage68en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000456655800006en_US
dc.citation.woscount0en_US
顯示於類別:會議論文