完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorKuo, Kuan-Tingen_US
dc.date.accessioned2019-04-02T06:04:19Z-
dc.date.available2019-04-02T06:04:19Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://dx.doi.org/10.21437/Interspeech.2017-832en_US
dc.identifier.urihttp://hdl.handle.net/11536/150995-
dc.description.abstractWe present a new stochastic learning machine for speech separation based on the variational recurrent neural network (VRNN). This VRNN is constructed from the perspectives of generative stochastic network and variational auto-encoder. The idea is to faithfully characterize the randomness of hidden state of a recurrent neural network through variational learning. The neural parameters under this latent variable model are estimated by maximizing the variational lower bound of log marginal likelihood. An inference network driven by the variational distribution is trained from a set of mixed signals and the associated source targets. A novel supervised VRNN is developed for speech separation. The proposed VRNN provides a stochastic point of view which accommodates the uncertainty in hidden states and facilitates the analysis of model construction. The masking function is further employed in network outputs for speech separation. The benefit of using VRNN is demonstrated by the experiments on monaural speech separation.en_US
dc.language.isoen_USen_US
dc.subjectrecurrent neural networken_US
dc.subjectvariational learningen_US
dc.subjectspeech separationen_US
dc.titleVariational Recurrent Neural Networks for Speech Separationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.21437/Interspeech.2017-832en_US
dc.identifier.journal18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTIONen_US
dc.citation.spage1193en_US
dc.citation.epage1197en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000457505000249en_US
dc.citation.woscount2en_US
顯示於類別:會議論文