Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorShen, Chenen_US
dc.date.accessioned2019-04-02T06:04:19Z-
dc.date.available2019-04-02T06:04:19Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2308-457Xen_US
dc.identifier.urihttp://dx.doi.org/10.21437/Interspeech.2017-856en_US
dc.identifier.urihttp://hdl.handle.net/11536/150996-
dc.description.abstractThis paper presents a new stochastic learning approach to construct a latent variable model for recurrent neural network (RNN) based speech recognition. A hybrid generative and discriminative stochastic network is implemented to build a deep classification model. In the implementation, we conduct stochastic modeling for hidden states of recurrent neural network based on the variational auto-encoder. The randomness of hidden neurons is represented by the Gaussian distribution with mean and variance parameters driven by neural weights and learned from variational inference. Importantly, the class labels of input speech frames are incorporated to regularize this deep model to sample the informative and discriminative features for reconstruction of classification outputs. We accordingly propose the stochastic RNN (SRNN) to reflect the probabilistic property in RNN classification system. A stochastic error backpropagation algorithm is implemented. The experiments on speech recognition using TIMIT and Aurora4 show the merit of the proposed SRNN.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectvariational inferenceen_US
dc.subjectstochastic error backpropagationen_US
dc.subjectspeech recognitionen_US
dc.titleStochastic Recurrent Neural Network for Speech Recognitionen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.21437/Interspeech.2017-856en_US
dc.identifier.journal18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTIONen_US
dc.citation.spage1313en_US
dc.citation.epage1317en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000457505000273en_US
dc.citation.woscount1en_US
Appears in Collections:Conferences Paper