完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Poshengen_US
dc.contributor.authorShen, Chin-Hanen_US
dc.contributor.authorHsiao, Hsu-Fengen_US
dc.date.accessioned2019-04-02T06:04:15Z-
dc.date.available2019-04-02T06:04:15Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1546-1874en_US
dc.identifier.urihttp://hdl.handle.net/11536/151059-
dc.description.abstractIn this paper, a learning based salient object detection method for RGBD images is introduced. With the assistance of depth information, the silhouette features of an object can be retrieved primarily, and it can lead to better detection of salient objects. In addition, many recent works still rely on some image post-processing methods to improve their performance. We develop a more efficient end-to-end model with a modified design of loss function used in our training network. The design of the new loss function is to increase the spatial coherence of detected salient objects. From the evaluation results, the proposed approach shows good performance compared with the methods that are considered to be state-of-the-art.en_US
dc.language.isoen_USen_US
dc.subjectfully convolutional networksen_US
dc.subjectsalient object detectionen_US
dc.subjectdeep learningen_US
dc.titleRGBD Salient Object Detection using Spatially Coherent Deep Learning Frameworken_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000458909600046en_US
dc.citation.woscount0en_US
顯示於類別:會議論文