完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ping-Rongen_US
dc.contributor.authorLo, Shao-Yuanen_US
dc.contributor.authorHang, Hsueh-Mingen_US
dc.contributor.authorChan, Sheng-Weien_US
dc.contributor.authorLin, Jing-Jhihen_US
dc.date.accessioned2019-04-02T06:04:16Z-
dc.date.available2019-04-02T06:04:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1546-1874en_US
dc.identifier.urihttp://hdl.handle.net/11536/151061-
dc.description.abstractLane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-oder polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.en_US
dc.language.isoen_USen_US
dc.subjectsemantic segmentationen_US
dc.subjectlane detectionen_US
dc.subjectdilated convolutionen_US
dc.subjectdeep convolutional neural networksen_US
dc.titleEfficient Road Lane Marking Detection with Deep Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP)en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000458909600135en_US
dc.citation.woscount0en_US
顯示於類別:會議論文