完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChan, Hui-Lingen_US
dc.contributor.authorWang, Jung-Weien_US
dc.contributor.authorChen, Yong-Shengen_US
dc.date.accessioned2019-04-02T06:04:16Z-
dc.date.available2019-04-02T06:04:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1546-1874en_US
dc.identifier.urihttp://hdl.handle.net/11536/151062-
dc.description.abstractMotor-imagery-based brain computer interface has advantages in high information transition rate and has potential to achieve high portability without using a display for visual stimulation. However, electroencephalographic data is a mixture of neural activity from various brain locations and also external artifacts. This paper presents a novel method utilizing source level features computed based on maximum contrast beamformer. The estimated source activity has the maximum contrast between the power during the reference period and the period that event-related synchronization or desynchronization emerges. Moreover, this method utilizes the classification structure based on divide-and-conquer concept to identify four classes of motor imageries, including left hand, right hand, tongue, and foot. The experimental results demonstrate the improvement in classification accuracy by using the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectmotor imageryen_US
dc.subjectbrain computer interfaceen_US
dc.subjectelectroencephalographyen_US
dc.subjectbeamformer source estimationen_US
dc.subjectevent-related desyncrhonizationen_US
dc.subjectdivide-and-conquer classificationen_US
dc.titleBeamformer Source Estimation Improves Accuracy of Motor-Imagery-based Brain Computer Interfaceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP)en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000458909600179en_US
dc.citation.woscount0en_US
顯示於類別:會議論文