Full metadata record
DC FieldValueLanguage
dc.contributor.authorSullivan, Thomas J.en_US
dc.contributor.authorDeiss, Stephen R.en_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorCauwenberghs, Gerten_US
dc.date.accessioned2019-04-02T06:04:42Z-
dc.date.available2019-04-02T06:04:42Z-
dc.date.issued2008-01-01en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ISCAS.2008.4541835en_US
dc.identifier.urihttp://hdl.handle.net/11536/151160-
dc.description.abstractElectroencephalograph (EEG) recording systems offer a versatile, non-invasive window on the brain's spatiotemporal activity for many neuroscience and clinical applications. Our research aims to improve the convenience and mobility of EEG recording by eliminating the need for conductive gel and creating sensors that fit into a scalable array architecture. The EEG dry-contact electrodes are created with micro-electrical-mechanical system (MEMS) technology. Each channel of our analog signal processing front-end comes on a custom-built, dime-sized circuit board which contains an amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. A system consisting of seven sensors is demonstrated in a real-world setting. Consuming just 3 mW, it is suitable for mobile applications. The system achieves an input-referred noise of 0.28 mu V-rms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. Noise behavior across the daisy-chain is characterized, alpha-band rhythms are detected, and an eye-blink study is demonstrated.en_US
dc.language.isoen_USen_US
dc.titleA brain-machine interface using dry-contact, low-noise EEG sensorsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ISCAS.2008.4541835en_US
dc.identifier.journalPROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10en_US
dc.citation.spage1986en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000258532101228en_US
dc.citation.woscount36en_US
Appears in Collections:Conferences Paper