完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Wen-Haoen_US
dc.contributor.authorLi, Yih-Langen_US
dc.contributor.authorChao, Kai-Yuanen_US
dc.date.accessioned2014-12-08T15:21:18Z-
dc.date.available2014-12-08T15:21:18Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-1398-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/15125-
dc.description.abstractMultiple dynamic supply voltage (MDSV) provides an effective way to reduce dynamic power and is widely used in high-end or low-power designs. The challenge of routing MDSV designs is that the net in MDSV designs needs to be planned carefully to avoid electrical problems or functional failure as a long interconnect path pass through the shutdown power domains. As the first work to address the MDSV global routing problem, power domain-aware routing (PDR) problem is defined and the point-to-point PDR algorithm is also presented herein with look-ahead path selection method and look-up table acceleration approach. For multi-pin net routings, a novel constant-time table-lookup mechanism by invoking four enhanced monotonic routings to fast compute the least-cost monotonic path from every node to the target sub-tree is presented to speed up the query about routing cost (including driven-length slack) to target during multi-source multi-target PDR. Experimental results confirm that the proposed MDSV-based global router can efficiently identify legally optimized routing results for MDSV designs, and can effectively reduce overflow, wire length, inserted level shifters and runtime.en_US
dc.language.isoen_USen_US
dc.titleHigh-Quality Global Routing for Multiple Dynamic Supply Voltage Designsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD)en_US
dc.citation.spage263en_US
dc.citation.epage269en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000299009100042-
顯示於類別:會議論文