Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Po-Ningen_US
dc.contributor.authorLin, Hsuan-Yinen_US
dc.contributor.authorMoser, Stefan M.en_US
dc.date.accessioned2014-12-08T15:21:19Z-
dc.date.available2014-12-08T15:21:19Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-0437-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/15137-
dc.description.abstractBlock-codes with a very small number of codewords are investigated for the two special binary memoryless channels, the binary symmetric channel (BSC) and the Z-channel (ZC). The optimal (in the sense of minimum average error probability, using maximum likelihood decoding) code structure is derived for the cases of two, three, and four codewords and an arbitrary blocklength. It is shown that for two possible messages, on a BSC, the so-called flip codes of type t are optimal for any t, while on a ZC, the flip code of type 0 is optimal. For codes with three or four messages it is shown that the so-called weak flip codes of some given type are optimal where the type depends on the blocklength. For all cases an algorithm is presented that constructs an optimal code for blocklength n recursively from an optimal code of length n - 1. For the ZC a recursive optimal code design is conjectured in the case of five possible messages. The derivation of these optimal codes relies heavily on a new approach of constructing and analyzing the code-matrix not row-wise (codewords), but column-wise. Moreover, these results also prove that the minimum Hamming distance might be the wrong design criterion for optimal codes even for very symmetric channels like the BSC.en_US
dc.language.isoen_USen_US
dc.titleUltra-Small Block-Codes for Binary Discrete Memoryless Channelsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INFORMATION THEORY WORKSHOP (ITW)en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000299416200036-
Appears in Collections:Conferences Paper