Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Ming-Hungen_US
dc.contributor.authorLin, Horng-Chihen_US
dc.contributor.authorLi, Pei-Wenen_US
dc.date.accessioned2019-05-02T00:25:51Z-
dc.date.available2019-05-02T00:25:51Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2019.2897813en_US
dc.identifier.urihttp://hdl.handle.net/11536/151596-
dc.description.abstractWe reported the fabrication of submicrometer p-type tin monoxide (SnO) thin-film transistors (TFTs) with a channel length of 0.2 mu m for back-end-of-line applications using a film profile engineering (FPE) approach. Material analyses indicate that the as-deposited SnO films are amorphous, while be transformed to polycrystalline after a thermal annealing in oxygen ambient. Fabricated p-type SnO FPE-TFTs of a channel length of 0.2 mu m were manifested with ON/OFF current ratio higher than 105 and subthreshold slope of 320 mV/decade, superior to the data of submicrometer SnO devices ever reported. The extracted field-effect mobility is about 0.25 cm(2)/V.s. After ruling out the influence of source/drain series resistance, the intrinsic field-effect mobility is found to be about 1 cm(2)/V.s.en_US
dc.language.isoen_USen_US
dc.subjectSource/drain series resistanceen_US
dc.subjectthin-film transistor (TFT)en_US
dc.subjecttin monoxide (SnO)en_US
dc.titleSubmicrometer p-Type SnO Thin-Film Transistors Fabricated by Film Profile Engineering Methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2019.2897813en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume66en_US
dc.citation.issue4en_US
dc.citation.spage1766en_US
dc.citation.epage1771en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000461838600023en_US
dc.citation.woscount0en_US
Appears in Collections:Articles