標題: A finite element based fast eigensolver for three dimensional anisotropic photonic crystals
作者: Chou, So-Hsiang
Huang, Tsung-Ming
Li, Tiexiang
Lin, Jia-Wei
Lin, Wen-Wei
應用數學系
Department of Applied Mathematics
關鍵字: Maxwell's equations;Three-dimensional anisotropic photonic crystals;Face-centered cubic lattice;Finite element method;Null-space free eigenvalue problem and fast;Fourier transforms
公開日期: 1-六月-2019
摘要: The standard Yee's scheme for the Maxwell eigenvalue problem places the discrete electric field variable at the midpoints of the edges of the grid cells. It performs well when the permittivity is a scalar field. However, when the permittivity is a Hermitian full tensor field it would generate un-physical complex eigenvalues or frequencies. In this paper, we propose a finite element method which can be interpreted as a modified Yee's scheme to overcome this difficulty. This interpretation enables us to create a fast FFT eigensolver that can compute very effectively the band structure of the anisotropic photonic crystal with SC and FCC lattices. Furthermore, we overcome the usual large null space associated with the Maxwell eigenvalue problem by deriving a null-space free discrete eigenvalue problem which involves a crucial Hermitian positive definite linear system to be solved in each of the iteration steps. It is demonstrated that the CG method without preconditioning converges in 37 iterations even when the dimension of a matrix is as large as 5, 184, 000. (C) 2019 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.jcp.2019.02.029
http://hdl.handle.net/11536/151602
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2019.02.029
期刊: JOURNAL OF COMPUTATIONAL PHYSICS
Volume: 386
起始頁: 611
結束頁: 631
顯示於類別:期刊論文