完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSpector, Daniel E.en_US
dc.contributor.authorSpector, Scott J.en_US
dc.date.accessioned2019-05-02T00:25:51Z-
dc.date.available2019-05-02T00:25:51Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn0003-9527en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00205-019-01360-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/151605-
dc.description.abstractThe uniqueness of equilibrium for a compressible, hyperelastic body subject to dead-load boundary conditions is considered. It is shown, for both the displacement and mixed problems, that there cannot be two solutions of the equilibrium equations of Finite (Nonlinear) Elasticity whose nonlinear strains are uniformly close to each other. This result is analogous to the result of JOHN (Commun Pure Appl Math 25:617-634, 1972), who proved that, for the displacement problem, there is a most one equilibrium solution with uniformly small strains. The proof in this manuscript utilizes Geometric Rigidity, a new straightforward extension of the Fefferman-Stein inequality to bounded domains, and an appropriate adaptation, for Elasticity, of a result from the Calculus of Variations. Specifically, it is herein shown that the uniform positivity of the second variation of the energy at an equilibrium solution implies that this mapping is a local minimizer of the energy among deformations whose gradient is sufficiently close, in BMO boolean AND L-1 , to the gradient of the equilibrium solution.en_US
dc.language.isoen_USen_US
dc.titleUniqueness of Equilibrium with Sufficiently Small Strains in Finite Elasticityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00205-019-01360-1en_US
dc.identifier.journalARCHIVE FOR RATIONAL MECHANICS AND ANALYSISen_US
dc.citation.volume233en_US
dc.citation.issue1en_US
dc.citation.spage409en_US
dc.citation.epage449en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000464752100008en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文