Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Fang-Chungen_US
dc.date.accessioned2019-05-02T00:25:52Z-
dc.date.available2019-05-02T00:25:52Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn1687-9422en_US
dc.identifier.urihttp://dx.doi.org/10.1155/2019/4538514en_US
dc.identifier.urihttp://hdl.handle.net/11536/151608-
dc.description.abstractHerein, we report virtual screening of potential semiconductor polymers for high-performance organic photovoltaic (OPV) devices using various machine learning algorithms. We particularly focus on support vector machine (SVM) and ensemble learning approaches. We found that the power conversion efficiencies of the device prepared with the polymer candidates can be predicted with their structure fingerprints as the only inputs. In other words, no preliminary knowledge about material properties was required. Additionally, the predictive performance could be further improved by "blending" the results of the SVM and random forest models. The resulting ensemble learning algorithm might open up a new opportunity for more precise, high-throughput virtual screening of conjugated polymers for OPV devices.en_US
dc.language.isoen_USen_US
dc.titleVirtual Screening of Conjugated Polymers for Organic Photovoltaic Devices Using Support Vector Machines and Ensemble Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2019/4538514en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF POLYMER SCIENCEen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000464781500001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles