Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Heng-Weien_US
dc.contributor.authorWu, Tung-Yuen_US
dc.contributor.authorWan, Shengen_US
dc.contributor.authorWong, Wing Hungen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2019-05-02T00:25:54Z-
dc.date.available2019-05-02T00:25:54Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn1520-9210en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TMM.2018.2866770en_US
dc.identifier.urihttp://hdl.handle.net/11536/151629-
dc.description.abstractHead pose estimation has attracted immense research interest recently, as its inherent information significantly improves the performance of face-related applications such as face alignment and face recognition. In this paper, we conduct an in-depth study of head pose estimation and present a multiregression loss function, an L2 regression loss combined with an ordinal regression loss, to train a convolutional neural network (CNN) that is dedicated to estimating head poses from RGB images without depth information. The ordinal regression loss is utilized to address the nonstationary property observed as the facial features change with respect to different head pose angles and learn robust features. The L2 regression loss leverages these features to provide precise angle predictions for input images. To avoid the ambiguity problem in the commonly used Euler angle representation, we further formulate the head pose estimation problem in quaternions. Our quaternion-based multiregression loss method achieves state-of-the-art performance on the AFLW2000, AFLW test set, and AFW datasets and is closing the gap with methods that utilize depth information on the BIWI dataset.en_US
dc.language.isoen_USen_US
dc.subjectConvolutional neural network (CNN)en_US
dc.subjecthead pose estimationen_US
dc.subjectordinal regressionen_US
dc.subjectquaternionen_US
dc.titleQuatNet: Quaternion-Based Head Pose Estimation With Multiregression Lossen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMM.2018.2866770en_US
dc.identifier.journalIEEE TRANSACTIONS ON MULTIMEDIAen_US
dc.citation.volume21en_US
dc.citation.issue4en_US
dc.citation.spage1035en_US
dc.citation.epage1046en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000462413700018en_US
dc.citation.woscount0en_US
Appears in Collections:Articles