Full metadata record
DC FieldValueLanguage
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorHu, Wen-Gueien_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2019-05-02T00:25:54Z-
dc.date.available2019-05-02T00:25:54Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn0143-3857en_US
dc.identifier.urihttp://dx.doi.org/10.1017/etds.2017.74en_US
dc.identifier.urihttp://hdl.handle.net/11536/151637-
dc.description.abstractThis study investigates a multiplicative integer system, an invariant subset of the full shift under the action of the semigroup of multiplicative integers, by using a method that was developed for studying pattern generation problems. The spatial entropy and the Minkowski dimensions of general multiplicative systems can thus be computed. A coupled system is the intersection of a multiplicative integer system and the golden mean shift, which can be decoupled by removing the multiplicative relation set and then performing procedures similar to those applied to a decoupled system. The spatial entropy can be obtained after the remaining error term is shown to approach zero.en_US
dc.language.isoen_USen_US
dc.titlePattern generation problems arising in multiplicative integer systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/etds.2017.74en_US
dc.identifier.journalERGODIC THEORY AND DYNAMICAL SYSTEMSen_US
dc.citation.volume39en_US
dc.citation.spage1234en_US
dc.citation.epage1260en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000462581800004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles