完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Da-Changen_US
dc.contributor.authorWang, Shin-Hwaen_US
dc.contributor.authorLiang, Yu-Haoen_US
dc.date.accessioned2019-05-02T00:25:57Z-
dc.date.available2019-05-02T00:25:57Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://dx.doi.org/10.11650/tjm/180502en_US
dc.identifier.urihttp://hdl.handle.net/11536/151671-
dc.description.abstractWe study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Dirichlet-Neumann boundary value problem {u ''(x) + lambda f (u) = 0, 0 < x < 1, u(0) = 0, u' (1) = -c < 0, where lambda > 0 is a bifurcation parameter and c > 0 is an evolution parameter. We mainly prove that, under some suitable assumptions on f, there exists c(1) > 0, such that, on the (lambda,parallel to u parallel to(infinity))-plane, (i) when 0 < c < c(1), the bifurcation curve is S-shaped; (ii) when c >= c(1), the bifurcation curve is subset of-shaped. Our results can be applied to the one-dimensional perturbed Gelfand equation with f(u) = exp (au/a+u) for a >= 4.37.en_US
dc.language.isoen_USen_US
dc.subjectbifurcationen_US
dc.subjectmultiplicityen_US
dc.subjectpositive solutionen_US
dc.subjectS-shaped bifurcation curveen_US
dc.subjectsubset of-shaped bifurcation curveen_US
dc.subjecttime mapen_US
dc.titleClassification and Evolution of Bifurcation Curves for a Dirichlet-Neumann Boundary Value Problem and its Applicationen_US
dc.typeArticleen_US
dc.identifier.doi10.11650/tjm/180502en_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume23en_US
dc.citation.issue2en_US
dc.citation.spage307en_US
dc.citation.epage331en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000461757500003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文