完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHelal, Mohammed H. S.en_US
dc.contributor.authorFan, Chih-Tienen_US
dc.contributor.authorLiu, De-Youen_US
dc.contributor.authorYuan, Shyan-Mingen_US
dc.date.accessioned2019-05-02T00:26:49Z-
dc.date.available2019-05-02T00:26:49Z-
dc.date.issued2017-01-01en_US
dc.identifier.isbn978-1-5386-3202-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/151749-
dc.description.abstractIn an attempt to reduce communication overhead while maintaining high quality Genetic Algorithm results, this paper presents a Peer-to-Peer based Genetic Algorithm that suites both Parallel and Distributed environments. In order to improve our approach's applicability on both distributed and parallel environments, we experimented a set of different individual exchange intervals when running some well-known hard optimization problems. The proposed approach has been applied in different exchange rates and benchmarked with a regular Master-Slave based PGA on result quality and executions time. Experimental results show that our approach managed to find high quality results in shorter execution time compared to Master-Slave based PGA.en_US
dc.language.isoen_USen_US
dc.subjectCloud Computingen_US
dc.subjectGenetic Algorithmen_US
dc.subjectDistributed Computingen_US
dc.subjectPeer-to-Peeren_US
dc.titlePeer-to-Peer Based Parallel Genetic Algorithmen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND ENGINEERING (IEEE-ICICE 2017)en_US
dc.citation.spage535en_US
dc.citation.epage538en_US
dc.contributor.department資訊科學與工程研究所zh_TW
dc.contributor.departmentInstitute of Computer Science and Engineeringen_US
dc.identifier.wosnumberWOS:000463957900103en_US
dc.citation.woscount0en_US
顯示於類別:會議論文