完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shieh, Min-Zheng | en_US |
dc.contributor.author | Tsai, Shi-Chun | en_US |
dc.date.accessioned | 2014-12-08T15:21:21Z | - |
dc.date.available | 2014-12-08T15:21:21Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.isbn | 978-1-4577-0595-3 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/15174 | - |
dc.description.abstract | Let S-n(lambda) be the set of all permutations over the multiset [GRAPHICS] where n = m lambda. A frequency permutation array (FPA) of minimum distance d is a subset of S-n(lambda) in which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert- Varshamov bound and the spherepacking bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Both methods extend previous known results. The first one runs in O((()(2d lambda)2.376)(d lambda) log n) time and O((()(2d lambda)2)(d lambda)) space. The second one runs in O ((()(2d lambda)()(d lambda) (d lambda+lambda))(lambda)n/lambda) time and O((2d lambda)(d lambda)) space. For small constants lambda and d, both are efficient in time and use constant storage space. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Computing the Ball Size of Frequency Permutations under Chebyshev Distance | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000297465102076 | - |
顯示於類別: | 會議論文 |