完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, Min-Zhengen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2014-12-08T15:21:21Z-
dc.date.available2014-12-08T15:21:21Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-0595-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/15174-
dc.description.abstractLet S-n(lambda) be the set of all permutations over the multiset [GRAPHICS] where n = m lambda. A frequency permutation array (FPA) of minimum distance d is a subset of S-n(lambda) in which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert- Varshamov bound and the spherepacking bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Both methods extend previous known results. The first one runs in O((()(2d lambda)2.376)(d lambda) log n) time and O((()(2d lambda)2)(d lambda)) space. The second one runs in O ((()(2d lambda)()(d lambda) (d lambda+lambda))(lambda)n/lambda) time and O((2d lambda)(d lambda)) space. For small constants lambda and d, both are efficient in time and use constant storage space.en_US
dc.language.isoen_USen_US
dc.titleComputing the Ball Size of Frequency Permutations under Chebyshev Distanceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000297465102076-
顯示於類別:會議論文