Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chung-Kuanen_US
dc.contributor.authorHo, E-Linen_US
dc.contributor.authorShieh, Shiuhpyng Winstonen_US
dc.date.accessioned2019-05-02T00:26:50Z-
dc.date.available2019-05-02T00:26:50Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-5386-5790-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/151756-
dc.description.abstractOne yet-to-be-solved but very vital memory forensic problem is to recover data structure information from a specified memory range. Unlike previous studies relying on fixed signature of value or structure, DeepMemIntrospect is the first convolution neural network (CNN) based memory forensic system that can recover data structure information merely from raw memory without relying on signatures. Our experimental results demonstrate high accuracy with over 99% and also show significant performance improvement.en_US
dc.language.isoen_USen_US
dc.subjectMemory forensicen_US
dc.subjectdeep learningen_US
dc.subjectdata structure reversingen_US
dc.titleDeepMemIntrospect: Recognizing Data Structures in Memory with Neural Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC)en_US
dc.citation.spage157en_US
dc.citation.epage158en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000462054900018en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper