完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorShen, Liang-Chien_US
dc.contributor.authorWeng, Li-Shengen_US
dc.date.accessioned2014-12-08T15:21:21Z-
dc.date.available2014-12-08T15:21:21Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4244-9636-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/15186-
dc.description.abstractWe adopt the radial basis function network (RBF) for well log data inversion. We propose the 3 layers RBF. Inside RBF, the 1-layer perceptron is replaced by 2-layer perceptron. It can do more nonlinear mapping. The gradient descent method is used in the back propagation learning rule at 2-layer perceptron. The input of the network is the apparent conductivity (Ca) and the output of the network is the true formation conductivity (Ct). 25 simulated well log data are used in the training. From experimental results, the network with 10 input data, first layer with 27 nodes, second layer with 9 hidden nodes and 10 output nodes can get the smallest average mean absolute error in the training. After training in the network, we apply it to do the inversion of the real field well log data to get the inverted Ct. Result is good. It shows that the RBF can do the well log data inversion.en_US
dc.language.isoen_USen_US
dc.titleRadial Basis Function Network for Well Log Data Inversionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)en_US
dc.citation.spage1093en_US
dc.citation.epage1098en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000297541201032-
顯示於類別:會議論文