完整後設資料紀錄
DC 欄位語言
dc.contributor.authorBharill, Nehaen_US
dc.contributor.authorPatel, Om Prakashen_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorMu, Lifengen_US
dc.contributor.authorLi, Dong-Linen_US
dc.contributor.authorMohanty, Manoranjanen_US
dc.contributor.authorKaiwartya, Omprakashen_US
dc.contributor.authorPrasad, Mukeshen_US
dc.date.accessioned2019-06-03T01:08:33Z-
dc.date.available2019-06-03T01:08:33Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2019.2891956en_US
dc.identifier.urihttp://hdl.handle.net/11536/151930-
dc.description.abstractData clustering is a challenging task to gain insights into data in various fields. In this paper, an Enhanced Quantum-Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is proposed for data clustering. In the EQIE-FCM, quantum computing concept is utilized in combination with the FCM algorithm to improve the clustering process by evolving the clustering parameters. The improvement in the clustering process leads to improvement in the quality of clustering results. To validate the quality of clustering results achieved by the proposed EQIE-FCM approach, its performance is compared with the other quantum-based fuzzy clustering approaches and also with other evolutionary clustering approaches. To evaluate the performance of these approaches, extensive experiments are being carried out on various benchmark datasets and on the protein database that comprises of four superfamilies. The results indicate that the proposed EQIE-FCM approach finds the optimal value of fitness function and the fuzzifier parameter for the reported datasets. In addition to this, the proposed EQIE-FCM approach also finds the optimal number of clusters and more accurate location of initial cluster centers for these benchmark datasets. Thus, it can be regarded as a more efficient approach for data clustering.en_US
dc.language.isoen_USen_US
dc.subjectClusteringen_US
dc.subjectquantum computingen_US
dc.subjectevolutionary algorithmen_US
dc.subjectfuzzy set theoryen_US
dc.subjectbioinformaticsen_US
dc.titleA Generalized Enhanced Quantum Fuzzy Approach for Efficient Data Clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2019.2891956en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume7en_US
dc.citation.spage50347en_US
dc.citation.epage50361en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000466207400001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文