完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, Chien-Linen_US
dc.contributor.authorNeslehova, Johanna G.en_US
dc.contributor.authorWang, Weijingen_US
dc.date.accessioned2019-06-03T01:08:37Z-
dc.date.available2019-06-03T01:08:37Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn0319-5724en_US
dc.identifier.urihttp://dx.doi.org/10.1002/cjs.11484en_US
dc.identifier.urihttp://hdl.handle.net/11536/151978-
dc.description.abstractThis article proposes a new model for right-censored survival data with multi-level clustering based on the hierarchical Kendall copula model of Brechmann (2014) with Archimedean clusters. This model accommodates clusters of unequal size and multiple clustering levels, without imposing any structural conditions on the parameters or on the copulas used at various levels of the hierarchy. A step-wise estimation procedure is proposed and shown to yield consistent and asymptotically Gaussian estimates under mild regularity conditions. The model fitting is based on multiple imputation, given that the censoring rate increases with the level of the hierarchy. To check the model assumption of Archimedean dependence, a goodness-of test is developed. The finite-sample performance of the proposed estimators and of the goodness-of-fit test is investigated through simulations. The new model is applied to data from the study of chronic granulomatous disease. The Canadian Journal of Statistics 47: 182-203; 2019 (c) 2019 Statistical Society of Canadaen_US
dc.language.isoen_USen_US
dc.subjectArchimedean copulaen_US
dc.subjectassociationen_US
dc.subjectcensoringen_US
dc.subjectdimension reductionen_US
dc.subjecthierarchical clustered dataen_US
dc.subjectKendall distributionen_US
dc.subjectmultiple imputationen_US
dc.titleModelling hierarchical clustered censored data with the hierarchical Kendall copulaen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/cjs.11484en_US
dc.identifier.journalCANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUEen_US
dc.citation.volume47en_US
dc.citation.issue2en_US
dc.citation.spage182en_US
dc.citation.epage203en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000467581700003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文