完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, Gwowenen_US
dc.date.accessioned2019-06-03T01:08:38Z-
dc.date.available2019-06-03T01:08:38Z-
dc.date.issued2019-04-03en_US
dc.identifier.issn0022-0973en_US
dc.identifier.urihttp://dx.doi.org/10.1080/00220973.2017.1421518en_US
dc.identifier.urihttp://hdl.handle.net/11536/151993-
dc.description.abstractThe analysis of covariance (ANCOVA) is a useful statistical procedure that incorporates covariate features into the adjustment of treatment effects. The consequences of omitted prognostic covariates on the statistical inferences of ANCOVA are well documented in the literature. However, the corresponding influence on sample-size calculations for precise interval estimation has not been fully evaluated. This article aims to explicate the deficiency of approximate methods for ignoring the stochastic nature of covariate variables and to present exact approaches for precise interval estimation of treatment contrasts under the assumption that the covariate variables have a joint multinormal distribution. The desired precision of a confidence interval is assessed with respect to the control of expected half-width and to the assurance probability of interval half-width within a designated value. Numerical appraisals show that the suggested approaches outperform the approximate formulas for the two precision considerations.en_US
dc.language.isoen_USen_US
dc.subjectAnalysis of covarianceen_US
dc.subjectcontrasten_US
dc.subjectprecisionen_US
dc.subjectsample sizeen_US
dc.titleOn Sample-Size Calculations for Precise Contrast Analysis in ANCOVAen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00220973.2017.1421518en_US
dc.identifier.journalJOURNAL OF EXPERIMENTAL EDUCATIONen_US
dc.citation.volume87en_US
dc.citation.issue2en_US
dc.citation.spage238en_US
dc.citation.epage259en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000467881000004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文