完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLo, Wen-Huien_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2014-12-08T15:02:55Z-
dc.date.available2014-12-08T15:02:55Z-
dc.date.issued2008en_US
dc.identifier.isbn978-988-98671-9-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/1519-
dc.description.abstractRobust parameter estimation of sparse data is generally applied to the tasks when data collection is time-consuming or of high cost. We point out a new problem caused by sparse data. We find that there may exists coverage mismatch between data samples and the population when the sample size is less than 20. We call it the distribution mismatch (DM) problem. In this study, we derive a wide-sense joint pdf for coverage, range, the sample of minimum order, and data samples themselves to analyze the DM problem. Based on the formulation, a new algorithm is proposed to compensate the DM problem. Experimental results show that the mean estimate of the algorithm will converge to the population mean if the standard deviation of population is known.en_US
dc.language.isoen_USen_US
dc.subjectdistribution mismatchen_US
dc.subjectsparse dataen_US
dc.subjectcoverageen_US
dc.subjecttime-consuming data collectionen_US
dc.titleThe wide-sense parametric coverage estimator against the distribution mismatch problem for sparse dataen_US
dc.typeProceedings Paperen_US
dc.identifier.journalWORLD CONGRESS ON ENGINEERING 2008, VOLS I-IIen_US
dc.citation.spage1105en_US
dc.citation.epage1110en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000259580600207-
顯示於類別:會議論文