Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chieh-Yuen_US
dc.contributor.authorLai, Wenzeen_US
dc.contributor.authorHsieh, Hsin-Yingen_US
dc.contributor.authorWang, Yu-Shuenen_US
dc.contributor.authorPeng, Wen-Hsiaoen_US
dc.contributor.authorChuang, Jung-Hongen_US
dc.date.accessioned2019-06-03T01:09:16Z-
dc.date.available2019-06-03T01:09:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-5386-4195-8en_US
dc.identifier.issn2330-7927en_US
dc.identifier.urihttp://hdl.handle.net/11536/152009-
dc.description.abstractIn this paper, we present a method to generate realistic trajectories of defensive players in a basketball game based on the ball and the offensive team's movements. We train on the NBA dataset a conditional generative adversarial network that learns spatio-temporal interactions between players' movements. The network consists of two components: a generator that takes as input a latent noise vector and the offensive team's trajectories to generate defensive trajectories; and a discriminator that evaluates the realistic degree of the generated results. Our system allows players and coaches to simulate how the opposing team will react to a newly developed offensive strategy for evaluating its effectiveness. Experimental results demonstrate the feasibility of the proposed algorithm.en_US
dc.language.isoen_USen_US
dc.subjectConditional adversarial networken_US
dc.subjectbasketballen_US
dc.subjectstrategiesen_US
dc.titleADVERSARIAL GENERATION OF DEFENSIVE TRAJECTORIES IN BASKETBALL GAMESen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000465249700042en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper