Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, J. L.en_US
dc.contributor.authorChen, H. W.en_US
dc.contributor.authorHsieh, E. R.en_US
dc.contributor.authorChung, Steve S.en_US
dc.contributor.authorChen, T. P.en_US
dc.contributor.authorHuang, S. A.en_US
dc.contributor.authorChen, T. J.en_US
dc.contributor.authorCheng, Osberten_US
dc.date.accessioned2019-06-03T01:09:17Z-
dc.date.available2019-06-03T01:09:17Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-5386-4218-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/152022-
dc.description.abstractA pure logic 14nm FinFET with capabilities of linearly tunable V-th and excellent retention has been implemented as synapses in neuromorphic system., a Field Programmable Synapse Array (FPSA) has been adopted to replace conventional R-based memory Synapse Array (RSA). Thanks to the wide range of V-t-tuning ability, 200X on/off ratio, and the ultra-small variability, 12%, results showed that the training power and SN ratio of FPSA are 10 times and 50 times smaller than those of the RSA, respectively. Two applications were demonstrated on FPSA array for one-shot learning applications. First, FPSA is used to detect handwritten digits of MNIST dataset. "Learned it by once" can be achieved in this task. Furthermore, FPSA has been applied to recognize goldfish in Cifar 100 dataset after learned the other 4 fish species. With the assistance from one-shot learning, results show the machine learned it faster and better on EDGE. This demonstrates the feasibility of FPSA for low-power and cost-effective synapse-based one-shot learning applications in the AIoT era.en_US
dc.language.isoen_USen_US
dc.titleAn Energy Efficient FinFET-based Field Programmable Synapse Array (FPSA) Feasible for One-shot Learning on EDGE AIen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGYen_US
dc.citation.spage29en_US
dc.citation.epage30en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000465075200009en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper