Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chun-Yuen_US
dc.contributor.authorRuan, Peiyingen_US
dc.contributor.authorLi, Ruimingen_US
dc.contributor.authorYang, Jinn-Moonen_US
dc.contributor.authorSee, Simonen_US
dc.contributor.authorSong, Jiangningen_US
dc.contributor.authorAkutsu, Tatsuyaen_US
dc.date.accessioned2019-08-02T02:15:24Z-
dc.date.available2019-08-02T02:15:24Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn0219-7200en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0219720019400055en_US
dc.identifier.urihttp://hdl.handle.net/11536/152144-
dc.description.abstractCancer subtype identification is an unmet need in precision diagnosis. Recently, evolutionary conservation has been indicated to contain informative signatures for functional significance in cancers. However, the importance of evolutionary conservation in distinguishing cancer subtypes remains largely unclear. Here, we identified the evolutionarily conserved genes (i.e. core genes) and observed that they are primarily involved in cellular pathways relevant to cell growth and metabolisms. By using these core genes, we developed two novel strategies, namely a feature-based strategy (FES) and an image-based strategy (IMS) by integrating their evolutionary and genomic profiles with the deep learning algorithm. In comparison with the FES using the random set and the strategy using the PAM50 classifier, the core gene set-based FES achieved a higher accuracy for identifying breast cancer subtypes. The IMS and FES using the core gene set yielded better performances than the other strategies, in terms of classifying both breast cancer subtypes and multiple cancer types. Moreover, the IMS is reproducible even using different gene expression data (i.e. RNA-seq and microarray). Comprehensive analysis of eight cancer types demonstrates that our evolutionary conservation-based models represent a valid and helpful approach for identifying cancer subtypes and the core gene set offers distinguishable clues of cancer subtypes.en_US
dc.language.isoen_USen_US
dc.subjectCancer subtypeen_US
dc.subjectevolutionary conservationen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networken_US
dc.subjectcancer genomicsen_US
dc.subjectgene expressionen_US
dc.subjectcopy number alterationen_US
dc.titleDeep learning with evolutionary and genomic profiles for identifying cancer subtypesen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219720019400055en_US
dc.identifier.journalJOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGYen_US
dc.citation.volume17en_US
dc.citation.issue3en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000474874500002en_US
dc.citation.woscount0en_US
Appears in Collections:Articles