完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Guan-Yuen_US
dc.contributor.authorKumagai, Takashien_US
dc.date.accessioned2019-08-02T02:15:32Z-
dc.date.available2019-08-02T02:15:32Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn0040-8735en_US
dc.identifier.urihttp://dx.doi.org/10.2748/tmj/1561082599en_US
dc.identifier.urihttp://hdl.handle.net/11536/152218-
dc.description.abstractIn this article, we consider products of random walks on finite groups with moderate growth and discuss their cutoffs in the total variation. Based on several comparison techniques, we are able to identify the total variation cutoff of discrete time lazy random walks with the Hellinger distance cutoff of continuous time random walks. Along with the cutoff criterion for Laplace transforms, we derive a series of equivalent conditions on the existence of cutoffs, including the existence of pre-cutoffs, Peres' product condition and a formula generated by the graph diameters. For illustration, we consider products of Heisenberg groups and randomized products of finite cycles.en_US
dc.language.isoen_USen_US
dc.subjectProduct chainsen_US
dc.subjectrandom walksen_US
dc.subjectmoderate growthen_US
dc.titlePRODUCTS OF RANDOM WALKS ON FINITE GROUPS WITH MODERATE GROWTHen_US
dc.typeArticleen_US
dc.identifier.doi10.2748/tmj/1561082599en_US
dc.identifier.journalTOHOKU MATHEMATICAL JOURNALen_US
dc.citation.volume71en_US
dc.citation.issue2en_US
dc.citation.spage281en_US
dc.citation.epage302en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000472828400005en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文