完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Li, Ming-Chia | en_US |
dc.date.accessioned | 2019-08-02T02:15:34Z | - |
dc.date.available | 2019-08-02T02:15:34Z | - |
dc.date.issued | 2019-05-01 | en_US |
dc.identifier.issn | 1054-1500 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1063/1.5091451 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152235 | - |
dc.description.abstract | In 2001, Kennedy et al. [Amer. Math. Mon. 108, 411-423 (2001) and Trans. Amer. Math. Soc. 353, 2513-2530 (2001)] showed a chaos lemma and stated the pseudoconjecture "stretches across implies existence of an invariant set." In this paper, we give a suitable definition of stretches across in topological sense so that the conjecture has an affirmative answer. More precisely, we show that there must be an orbit through a sequence of stretches across. In particular, a closed loop of stretches across implies existence of a periodic orbit. We also give the geometric meaning of stretches across and its relation with the global implicit function theorem. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Stretches across for chaos | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1063/1.5091451 | en_US |
dc.identifier.journal | CHAOS | en_US |
dc.citation.volume | 29 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000473600200032 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |