Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Yun-Hsuanen_US
dc.contributor.authorChou, Yung-Linen_US
dc.contributor.authorChang, Shu-Weien_US
dc.contributor.authorWu, Chao-Hsinen_US
dc.date.accessioned2019-08-02T02:15:35Z-
dc.date.available2019-08-02T02:15:35Z-
dc.date.issued2019-07-07en_US
dc.identifier.issn0021-8979en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.5091050en_US
dc.identifier.urihttp://hdl.handle.net/11536/152251-
dc.description.abstractWe investigate the current gain of quantum-well heterojunction bipolar transistors (QW-HBTs) under different operation temperatures. It is experimentally shown that the introduction of a QW into the base region of HBTs results in an increasing current gain with the temperature, which is a behavior opposite to that of typical HBTs. An enhancement of current gain around 226% is observed as the temperature of QW-HBT is raised from 35 to 95 degrees C. This unusual trend is mainly attributed to the shorter escape time of electrons in the QW at the higher temperature. A modified charge-control model based on thermionic emissions of electrons in the QW region is constructed to model this temperature-dependent phenomenon, and the result agrees well with our experimental observations.en_US
dc.language.isoen_USen_US
dc.titleThermally-enhanced current gain of quantum-well heterojunction bipolar transistoren_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.5091050en_US
dc.identifier.journalJOURNAL OF APPLIED PHYSICSen_US
dc.citation.volume126en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000474213800002en_US
dc.citation.woscount0en_US
Appears in Collections:Articles