Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chun-Chengen_US
dc.contributor.authorDeng, Der-Jiunnen_US
dc.contributor.authorChih, Yen-Lingen_US
dc.contributor.authorChiu, Hsin-Tingen_US
dc.date.accessioned2019-08-02T02:15:36Z-
dc.date.available2019-08-02T02:15:36Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn1551-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TII.2019.2908210en_US
dc.identifier.urihttp://hdl.handle.net/11536/152273-
dc.description.abstractManufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing. Therefore, this paper proposes a smart manufacturing factory framework based on edge computing, and further investigates the JSP under such a framework. With recent success of some AI applications, the deep Q network (DQN), which combines deep learning and reinforcement learning, has showed its great computing power to solve complex problems. Therefore, we adjust the DQN with an edge computing framework to solve the JSP. Different from the classical DQN with only one decision, this paper extends the DQN to address the decisions of multiple edge devices. Simulation results show that the proposed method performs better than the other methods using only one dispatching rule.en_US
dc.language.isoen_USen_US
dc.subjectDeep Q networken_US
dc.subjectedge computingen_US
dc.subjectjob shop schedulingen_US
dc.subjectmultiple dispatching rulesen_US
dc.subjectsmart manufacturingen_US
dc.titleSmart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Networken_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TII.2019.2908210en_US
dc.identifier.journalIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICSen_US
dc.citation.volume15en_US
dc.citation.issue7en_US
dc.citation.spage4276en_US
dc.citation.epage4284en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000474628100049en_US
dc.citation.woscount0en_US
Appears in Collections:Articles