完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiu, Yi-Hsuanen_US
dc.contributor.authorNaghadeh, Sara Bonabien_US
dc.contributor.authorLindley, Sarah A.en_US
dc.contributor.authorLai, Ting-Hsuanen_US
dc.contributor.authorKuo, Ming-Yuen_US
dc.contributor.authorChang, Kao-Deren_US
dc.contributor.authorZhang, Jin Z.en_US
dc.contributor.authorHsu, Yung-Jungen_US
dc.date.accessioned2019-08-02T02:15:36Z-
dc.date.available2019-08-02T02:15:36Z-
dc.date.issued2019-08-01en_US
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.nanoen.2019.05.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/152274-
dc.description.abstractWith porous shells and mobile cores, yolk-shell nanostructures provide great structural advantage for mass transport-related applications such as photocatalysis. In this work, Au-Cu7S4 yolk-shell nanostructures are synthesized from Au-Cu2O core-shell templates. The Cu7S4 shell is then converted to CdS through a cation exchange process to produce Au-CdS yolk-shell photocatalysts for hydrogen generation. Ultrafast transient absorption and finite-difference time-domain simulation are used to investigate electronic interaction between Au nanoparticle core and the surrounding CdS shell. Additionally, a new method is presented to simulate chemical transport and quantitatively compare diffusion kinetics by monitoring mass transport through the porous CdS shell with dye molecules as optical probes. The highest hydrogen generation rate of 3390 mu mol g(-1) h(-1), corresponding to an adequate apparent quantum yield of 4.22% at 420 nm, is achieved for Au-CdS with the largest void size. The enhancement in photocatalytic performance with increase in void size is mostly attributed to improved mass transport kinetics, with additional gains from more efficient charge transfer and stronger surface plasmon resonance-mediated near-field effects. This comprehensive study demonstrates that void size is a critical structural parameter in optimizing the performance of yolk-shell nanostructures for photocatalysis or other mass-transport related applications.en_US
dc.language.isoen_USen_US
dc.subjectAu-CdSen_US
dc.subjectYolk-shell nanostructuresen_US
dc.subjectVoid sizeen_US
dc.subjectDiffusion coefficienten_US
dc.subjectSolar hydrogen generationen_US
dc.titleYolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.nanoen.2019.05.008en_US
dc.identifier.journalNANO ENERGYen_US
dc.citation.volume62en_US
dc.citation.spage289en_US
dc.citation.epage298en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000474636100034en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文