Full metadata record
DC FieldValueLanguage
dc.contributor.authorKang, Ming-Hsuanen_US
dc.contributor.authorMcCallum, Ruperten_US
dc.date.accessioned2019-08-02T02:18:25Z-
dc.date.available2019-08-02T02:18:25Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn0925-9899en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10801-018-0857-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/152275-
dc.description.abstractIn the case where G = SL2(F) for a non-archimedean local field F and Gamma is a discrete torsion-free cocompact subgroup of G, there is a known relationship between the Ihara zeta function for the quotient of the Bruhat-Tits tree of G by the action of Gamma, and an alternating product of determinants of twisted Poincare series for parabolic subgroups of the affine Weyl group of G. We show how this can be generalized to other split simple algebraic groups of rank two over F and formulate a conjecture about how this might be generalized to groups of higher rank.en_US
dc.language.isoen_USen_US
dc.subjectBuildingen_US
dc.subjectIhara zeta functionen_US
dc.subjectCoxeter groupen_US
dc.subjectPoincare seriesen_US
dc.titleTwisted Poincare series and zeta functions on finite quotients of buildingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10801-018-0857-8en_US
dc.identifier.journalJOURNAL OF ALGEBRAIC COMBINATORICSen_US
dc.citation.volume49en_US
dc.citation.issue3en_US
dc.citation.spage309en_US
dc.citation.epage336en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000466343400004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles