完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Kuan-Hsien_US
dc.contributor.authorWang, Tsai-Fengen_US
dc.contributor.authorHu, Yuh-Jyhen_US
dc.date.accessioned2019-08-02T02:18:28Z-
dc.date.available2019-08-02T02:18:28Z-
dc.date.issued2019-06-10en_US
dc.identifier.issn1471-2105en_US
dc.identifier.urihttp://dx.doi.org/10.1186/s12859-019-2907-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/152300-
dc.description.abstractBackgroundAlthough various machine learning-based predictors have been developed for estimating protein-protein interactions, their performances vary with dataset and species, and are affected by two primary aspects: choice of learning algorithm, and the representation of protein pairs. To improve the performance of predicting protein-protein interactions, we exploit the synergy of multiple learning algorithms, and utilize the expressiveness of different protein-pair features.ResultsWe developed a stacked generalization scheme that integrates five learning algorithms. We also designed three types of protein-pair features based on the physicochemical properties of amino acids, gene ontology annotations, and interaction network topologies. When tested on 19 published datasets collected from eight species, the proposed approach achieved a significantly higher or comparable overall performance, compared with seven competitive predictors.ConclusionWe introduced an ensemble learning approach for PPI prediction that integrated multiple learning algorithms and different protein-pair representations. The extensive comparisons with other state-of-the-art prediction tools demonstrated the feasibility and superiority of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectProtein-protein interactionen_US
dc.subjectStacked generalizationen_US
dc.subjectGene ontologyen_US
dc.subjectNetwork topologyen_US
dc.titleProtein-protein interaction prediction using a hybrid feature representation and a stacked generalization schemeen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12859-019-2907-1en_US
dc.identifier.journalBMC BIOINFORMATICSen_US
dc.citation.volume20en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000470985300001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文