Full metadata record
DC FieldValueLanguage
dc.contributor.authorChoi, Charles T. M.en_US
dc.contributor.authorSun, Shu-Haien_US
dc.date.accessioned2014-12-08T15:21:24Z-
dc.date.available2014-12-08T15:21:24Z-
dc.date.issued2012-02-01en_US
dc.identifier.issn0018-9464en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TMAG.2011.2175377en_US
dc.identifier.urihttp://hdl.handle.net/11536/15231-
dc.description.abstractIn a typical approach to model electrical stimulation of an axon, a cable model equivalent to an axon was placed in a simple homogeneous medium. An electrode was used to induce an excitation to stimulate the cable model, and then the transmembrane potentials and the ionic currents in the cable model in temporal domain were observed. Unfortunately, this simulation approach is not realistic since inhomogeneous tissues near the axon is not considered. In this paper, the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is coupled with the equivalent model of a membrane (the Hodgkin-Huxley model), and a novel simulation scheme is developed to predict axon activation. By testing axon activation with current excitation, the simulation results show the new method is useful for simulating axon activation.en_US
dc.language.isoen_USen_US
dc.subjectAlternating-direction-implicit finite-difference time-domain (ADI-FDTD)en_US
dc.subjectaxon stimulationen_US
dc.subjectcable modelen_US
dc.subjectHodgkin-Huxley (HH) modelen_US
dc.titleSimulation of Axon Activation by Electrical Stimulation-Applying Alternating-Direction-Implicit Finite-Difference Time-Domain Methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMAG.2011.2175377en_US
dc.identifier.journalIEEE TRANSACTIONS ON MAGNETICSen_US
dc.citation.volume48en_US
dc.citation.issue2en_US
dc.citation.spage639en_US
dc.citation.epage642en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000299509100119-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000299509100119.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.