完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTrappey, Amy J. C.en_US
dc.contributor.authorChen, Paul P. J.en_US
dc.contributor.authorTrappey, Charles, Ven_US
dc.contributor.authorMa, Linen_US
dc.date.accessioned2019-08-02T02:18:31Z-
dc.date.available2019-08-02T02:18:31Z-
dc.date.issued2019-04-01en_US
dc.identifier.urihttp://dx.doi.org/10.3390/app9071478en_US
dc.identifier.urihttp://hdl.handle.net/11536/152330-
dc.description.abstractSolar power systems and their related technologies have developed into a globally utilized green energy source. Given the relatively high installation costs, low conversion rates and battery capacity issues, solar energy is still not a widely applied energy source when compared to traditional energy sources. Despite the challenges, there are many innovative studies of new materials and new methods for improving solar energy transformation efficiency to improve the competitiveness of solar energy in the marketplace. This research searches for promising solar power technologies by text mining 2280 global patents and 5610 literature papers of the past decade (January 2008 to June 2018). First, a solar power knowledge ontology schema (or a key term relationship map) is constructed from the comprehensive literature and patent review. Non-supervised machine learning techniques for clustering patents and literature combined with the Latent Dirichlet Allocation (LDA) topic modeling algorithm identify sub-technology clusters and their main topics. A word-embedding algorithm is applied to identify the patent documents of the specified technologies. Cross-validation of the results is used to model the technology progress with a patent evolution map. Initial analysis show that many patents focus on solar hydropower storage systems, transferring light generated power to waterpower gravity systems. Batteries are also used but have several limitations. The objectives of this research are to review solar technology development progress and describe the innovation path that has evolved for the solar power domain. By adopting unsupervised learning approaches for literature and patent mining, this research develops a novel technology e-discovery methodology and presents the detailed reviews and analyses of the solar power technology using the proposed e-discovery workflow. The insights of global solar technology development, based on both comprehensive literature and patent reviews and cross-analyses, helps energy companies select advanced technologies related to their key technical R&D strengths and business interests. The structured solar-related technology mining can be extended to the analysis of other forms of renewable energy development.en_US
dc.language.isoen_USen_US
dc.subjectsolar poweren_US
dc.subjectenergy generationen_US
dc.subjectpatent portfolioen_US
dc.subjectclusteringen_US
dc.subjectLDAen_US
dc.subjectword2vecen_US
dc.subjecttechnology miningen_US
dc.subjecttext miningen_US
dc.titleA Machine Learning Approach for Solar Power Technology Review and Patent Evolution Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app9071478en_US
dc.identifier.journalAPPLIED SCIENCES-BASELen_US
dc.citation.volume9en_US
dc.citation.issue7en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000466547500213en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文