完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Chun-Yuen_US
dc.contributor.authorCheng, Chung-Weien_US
dc.contributor.authorLee, An-Chenen_US
dc.contributor.authorTsai, Mi-Chingen_US
dc.date.accessioned2019-08-02T02:18:32Z-
dc.date.available2019-08-02T02:18:32Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn2214-8604en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.addma.2019.02.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/152339-
dc.description.abstractThe laser powder bed fusion (LPBF) process can produce parts with complex internal geometries that cannot be easily manufactured using a material removal process. However, owing to the different heat transfer efficiencies of a laser melting process, the optimal process parameters are limited to a small range. This study used galvanometric scanner technology and a diffractive optical element (DOE) to build an experimental multi-spot LPBF system. Adjustable characteristics were the angle and the lateral distance between spots. An adjustable multispot method was used to modulate the temperature field on the powder bed and enhance the processing quality and throughput. The results from the synchronized three-spot method using different scanning strategies improved the layer surface roughness Ra by 3.2 mu m. Moreover, the scanning time was decreased by 38.1% of the single-spot method.en_US
dc.language.isoen_USen_US
dc.subjectLaser powder bed fusionen_US
dc.subjectSelective laser meltingen_US
dc.subjectDiffractive optical elementen_US
dc.subjectMulti-spoten_US
dc.titleSynchronized multi-spot scanning strategies for the laser powder bed fusion processen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.addma.2019.02.009en_US
dc.identifier.journalADDITIVE MANUFACTURINGen_US
dc.citation.volume27en_US
dc.citation.spage1en_US
dc.citation.epage7en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000466995800001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文