Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Ling-Huaen_US
dc.contributor.authorChen, Po-Ningen_US
dc.contributor.authorTan, Vincent Y. F.en_US
dc.contributor.authorWang, Carolen_US
dc.contributor.authorHan, Yunghsiang S.en_US
dc.date.accessioned2019-08-02T02:18:32Z-
dc.date.available2019-08-02T02:18:32Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn0018-9448en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TIT.2018.2889244en_US
dc.identifier.urihttp://hdl.handle.net/11536/152351-
dc.description.abstractWe establish a general formula for the maximum size of finite length block codes with minimum pairwise distance no less than d. The achievability argument involves an iterative construction of a set of radius-d balls, each centered at a codeword. We demonstrate that the number of such balls that cover the entire code space cannot exceed this maximum size. Our approach can be applied to codes i) with elements over arbitrary code alphabets, and ii) under a broad class of distance measures. Our formula indicates that the maximum code size can be fully characterized by the cumulative distribution function of the distance measure evaluated at two independent and identically distributed random codewords. When the two random codewords assume a uniform distribution over the entire code alphabet, our formula recovers and thus naturally generalizes the Gilbert-Varshamov (GV) lower bound. Finally, we extend our study to the asymptotic setting.en_US
dc.language.isoen_USen_US
dc.subjectCoding theoryen_US
dc.subjectminimum distanceen_US
dc.subjectblock codesen_US
dc.subjectgraph theoryen_US
dc.titleOn the Maximum Size of Block Codes Subject to a Distance Criterionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIT.2018.2889244en_US
dc.identifier.journalIEEE TRANSACTIONS ON INFORMATION THEORYen_US
dc.citation.volume65en_US
dc.citation.issue6en_US
dc.citation.spage3751en_US
dc.citation.epage3757en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000468433400026en_US
dc.citation.woscount0en_US
Appears in Collections:Articles