完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Chun-Han (Matt)en_US
dc.contributor.authorAshby, David S.en_US
dc.contributor.authorBashian, Nicholas H.en_US
dc.contributor.authorSchoiber, Juergenen_US
dc.contributor.authorLiu, Ta-Chungen_US
dc.contributor.authorLee, Glenn S.en_US
dc.contributor.authorChen, San-Yuanen_US
dc.contributor.authorWu, Pu-Weien_US
dc.contributor.authorMelot, Brent C.en_US
dc.contributor.authorDunn, Bruce S.en_US
dc.date.accessioned2019-08-02T02:18:34Z-
dc.date.available2019-08-02T02:18:34Z-
dc.date.issued2019-05-09en_US
dc.identifier.issn1614-6832en_US
dc.identifier.urihttp://dx.doi.org/10.1002/aenm.201900226en_US
dc.identifier.urihttp://hdl.handle.net/11536/152367-
dc.description.abstractThe growing demand for bioelectronics has generated widespread interest in implantable energy storage. These implantable bioelectronic devices, powered by a complementary battery/capacitor system, have faced difficulty in miniaturization without compromising their functionality. This paper reports on the development of a promising high-rate cathode material for implantable power sources based on Li-exchanged Na1.5VOPO4F0.5 anchored on reduced graphene oxide (LNVOPF-rGO). LNVOPF is unique in that it offers dual charge storage mechanisms, which enable it to exhibit mixed battery/capacitor electrochemical behavior. In this work, electrochemical Li-ion exchange of the LNVOPF structure is characterized by operando X-ray diffraction. Through designed nanostructuring, the charge storage kinetics of LNVOPF are improved, as reflected in the stored capacity of 107 mAh g(-1) at 20C. A practical full cell device composed of LNVOPF and T-Nb2O5, which serves as a pseudocapacitive anode, is fabricated to demonstrate not only high energy/power density storage (100 Wh kg(-1) at 4000 W kg(-1)) but also reliable pulse capability and biocompatibility, a desirable combination for applications in biostimulating devices. This work underscores the potential of miniaturizing biomedical devices by replacing a conventional battery/capacitor couple with a single power source.en_US
dc.language.isoen_USen_US
dc.subjectimplantable power sourcesen_US
dc.subjectinternal pulse generatorsen_US
dc.subjectlithium ion intercalationen_US
dc.subjectsodium vanadium fluorophosphateen_US
dc.titleDesigning the Charge Storage Properties of Li-Exchanged Sodium Vanadium Fluorophosphate for Powering Implantable Biomedical Devicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/aenm.201900226en_US
dc.identifier.journalADVANCED ENERGY MATERIALSen_US
dc.citation.volume9en_US
dc.citation.issue18en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000468778800011en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文