Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuang, Yu-Cheng | en_US |
dc.contributor.author | Li, Zhi-Qing | en_US |
dc.contributor.author | Hsu, Chin-Wei | en_US |
dc.contributor.author | Liu, Yang | en_US |
dc.contributor.author | Chow, Chi-Wai | en_US |
dc.date.accessioned | 2019-08-02T02:18:34Z | - |
dc.date.available | 2019-08-02T02:18:34Z | - |
dc.date.issued | 2019-05-27 | en_US |
dc.identifier.issn | 1094-4087 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1364/OE.27.016377 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152377 | - |
dc.description.abstract | We propose and experimentally demonstrate a practical visible light position (VLP) system using repeated unit cells and machine learning (ML) algorithms. ML is employed to increase the positioning accuracy. Algorithms of the 2nd-order regression ML model and the polynomial trilateral ML model are discussed. More than 80% of the measurement data have position error within 4 cm when using the 2nd-order regression ML model, while the position error is within 5 cm when using the polynomial trilateral ML model. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | en_US |
dc.language.iso | en_US | en_US |
dc.title | Visible light communication and positioning using positioning cells and machine learning algorithms | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1364/OE.27.016377 | en_US |
dc.identifier.journal | OPTICS EXPRESS | en_US |
dc.citation.volume | 27 | en_US |
dc.citation.issue | 11 | en_US |
dc.citation.spage | 16377 | en_US |
dc.citation.epage | 16383 | en_US |
dc.contributor.department | 光電工程學系 | zh_TW |
dc.contributor.department | Department of Photonics | en_US |
dc.identifier.wosnumber | WOS:000469227200104 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |