Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Tin-Chih Tolyen_US
dc.contributor.authorWang, Yi-Chien_US
dc.date.accessioned2019-08-02T02:18:37Z-
dc.date.available2019-08-02T02:18:37Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn1868-5137en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12652-018-0986-xen_US
dc.identifier.urihttp://hdl.handle.net/11536/152407-
dc.description.abstractTo further increase the successful recommendation rate of a ubiquitous hotel recommendation system, an incremental learning and integer-nonlinear programming approach (INLP) is proposed in this study to mine users' unknown preferences. In the proposed methodology, an INLP problem is solved to adjust the values of weights in the recommendation mechanism to be closer to those in the decision-making mechanism so as to maximize the successful recommendation rate. In addition, the weights are adjusted on a rolling basis so that more historical data can be considered without inflating the INLP model. The experimental results showed that the proposed methodology outperformed several existing methods in increasing the successful recommendation rate, even with a cold start.en_US
dc.language.isoen_USen_US
dc.subjectUbiquitous recommendationen_US
dc.subjectIncremental learningen_US
dc.subjectInteger-nonlinear programmingen_US
dc.titleAn incremental learning and integer-nonlinear programming approach to mining users' unknown preferences for ubiquitous hotel recommendationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12652-018-0986-xen_US
dc.identifier.journalJOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTINGen_US
dc.citation.volume10en_US
dc.citation.issue7en_US
dc.citation.spage2771en_US
dc.citation.epage2780en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000469922500023en_US
dc.citation.woscount0en_US
Appears in Collections:Articles